
Dartmouth College | Research Computing

USING R FOR BASIC SPATIAL
ANALYSIS

• Research Computing and Spatial Analysis at
Dartmouth

• What is Spatial Analysis?

• What is R?

• Basics of R

• Common Spatial Packages for R

• Viewing and analyzing Spatial Data in R

• Hands-on practice

• Display in GIS software

• Questions and Wrap-up

OVERVIEW

RESEARCH COMPUTING AT DARTMOUTH

• Research Computing
• Workshops

• Storage

• Consulting

• Software

• Hardware

• Visit our website,
http://rc.dartmouth.edu/

• Request a research
account

• Email us
• research.computuing@da

rtmouth.edu

• stephen.p.gaughan@dart
mouth.edu

Mission: Promote the advancement of research through the use of high-performance
computing (HPC), life sciences support and bioinformatics, GIS consulting, services and
workshops

http://rc.dartmouth.edu/
mailto:research.computuing@dartmouth.edu
mailto:stephen.p.gaughan@dartmouth.edu

• Courses in the Geography Department and the Earth Sciences Department, GIS and spatial
analysis

• Geography Department http://geography.dartmouth.edu/

• Geog 50 Geographic Information Systems

• Geog 57 Urban Applications of GIS

• Geog 51 / Ears 65: Remote Sensing

• Geog 54 Geovisualization

• Geog 59/Ears 77 Environmental Applications of GIS

• Dartmouth College Library: Library Reference Research Guides for the R statistical
package, GIS and spatial analysis

• GIS http://researchguides.dartmouth.edu/gis

• Statistics, R http://researchguides.dartmouth.edu/statapp_koujue

• Research Computing

SPATIAL ANALYSIS AT DARTMOUTH

http://geography.dartmouth.edu/
http://researchguides.dartmouth.edu/gis
http://researchguides.dartmouth.edu/statapp_koujue

• Data Visualization using R

• James Adams, Baker-Berry Library, James.L.Adams@dartmouth.edu

• Statistical Consulting (R, Stata, SAS)

• Jianjun Hua from Ed Tech provides consulting support for statistics-related questions. Jianjun can be
contacted at 603-646-6552 or by emailing jianjun.hua@dartmouth.edu

• R for High Performance Computing, parallel computing, GIS

• Research.computing@Dartmouth.edu and http://rc.dartmouth.edu/

• R Club

• Katja Koeppen, Microbiology Department organizes an R Club, Katja.Koeppen@Dartmouth.edu

• Programming n’ Pizza http://rc.dartmouth.edu/index.php/programming-n-pizza/

• Departmental Courses at Dartmouth, Statistics, Math, Quantitative Social Sciences, etc

• Math 10, Math 50 https://math.dartmouth.edu/courses/by-term/ , http://qss.dartmouth.edu/

• Math 10, Online Stats book “Online Statistics Education: A Multimedia Course of Study”
(http://onlinestatbook.com/). David M. Lane, Rice University.

MORE INFO

mailto:James.L.Adams@dartmouth.edu
mailto:Research.computing@Dartmouth.edu
http://rc.dartmouth.edu/
mailto:Katja.Koeppen@Dartmouth.edu
http://rc.dartmouth.edu/index.php/programming-n-pizza/
https://math.dartmouth.edu/courses/by-term/
http://qss.dartmouth.edu/
http://onlinestatbook.com/

• Spatial analysis is the application of
analysis tools to spatial data

• Spatial data includes geographic data
in both raster and vector formats, for
example:

• Vector data – points, lines and regions
(polygons)

• Raster data – gridded data such as satellite
imagery, elevation data across a surface,
rainfall totals across a surface over a given
period of time

WHAT IS SPATIAL ANALYSIS?

• R is a free software environment used for computing, graphics and
statistics. It comes with a robust programming environment that includes
tools for data analysis, data visualization, statistics, high-performance
computing and geographic analysis. Visit https://www.r-project.org/ for
more

• R has been around for more than 20 years and it has become popular at
universities, research labs and federal and state government offices in the
last ten years for many applications

• R consists of base packages but also includes hundreds of add-on packages
that greatly extend the capabilities of the programming environment.

• These capabilities include data manipulation, data visualization and spatial
analysis tools

• CRAN-Spatial is located here: https://cran.r-
project.org/web/views/Spatial.html

• If you are already a GIS user, you’ll notice similar commands and
techniques, and of course, you’ll recognize spatial data when displayed on a
map in R

WHAT IS R?

https://www.r-project.org/
https://cran.r-project.org/web/views/Spatial.html

• The R console is a quick, light, multiplatform install

BASICS OF R (I)
THE R CONSOLE

• R Studio is cross-platform “integrated development environment” for R

• It allows us to save R commands to script files, view variables as we define them,
and see output and visualizations directly in the environment

• It runs on Mac and Windows

BASICS OF R (II)
WHAT IS R STUDIO?

The R Studio IDE

- Console
- Terminal
- Script Editor
- Variables
- Plots, Graphics, Maps!
- Exports
- Package import

• https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-
useful-R-packages

• Tidyr

• Ggplot2

• Dpylr

• xlsx

• Maps

• Sp

• Rgdal

• Parallel

BASICS OF R (III)
SOME PACKAGES TO EXTEND R

https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages

• Spatial:

• SP “spatial”

• GSTAT “geostatistics”

• RGDAL “geospatial data abstraction library for R”

• MAPS “maps”

• GGMAP “extends the plotting of ggplot2 with map data”

• RASTER “raster data processing”

• MAPTOOLS “map tools”

• SPATSTAT “wide range of spatial tools and functions”

COMMON SPATIAL PACKAGES FOR R

VIEWING AND ANALYZING SPATIAL
DATA (I)

• Put a Google base map right in your
plot window, overlay spatial data on
to the map plot

12

Map overlay & spatial statistics

Packages sp, rgdal and maps can turn your R in to
a GIS: read, write and analyze spatial data, map
overlay

VIEWING AND ANALYZING SPATIAL DATA (I)
GEOGRAPHIC INFORMATION ANALYSIS

• ?setwd

• Help(setwd)

• Web Searches

• Google ‘r set working
directory’

• Stack Overflow ‘r set
working directory stack
overflow’

HELP IN R

READY TO DIVE IN?

• We’ll use R Studio today so we can see
our spatial analysis and work with R
script files

• Open R Studio

• In the “Console” at the “greater than”
symbol, enter:

> install.pakages(“maps”)

• Continue on in R Studio, entering the following commands:

GETTING STARTED

install.packages("ggmap")
library(maps)
library(ggmap)

visited <- c("Boston, MA", "Anchorage, AK")
ll.visited <- geocode(visited)
visit.x <- ll.visited$lon
visit.y <-ll.visited$lat

GETTING STARTED

Use the “#” to add comments to your code
geocode function package “ggmap”

plot.new()

map("world", fill=TRUE, col="white",
bg="lightblue", ylim=c(-60, 90), mar=c(0,0,0,0))

points(visit.x,visit.y, col="red", pch=16)

• The “geocoded” data should now show up in R Studio’s plots window,
shown on a map of the world

VIEW THE RESULTS

• Enter the following in to the R Studio command line

MAP A COORDINATE PAIR

install.packages("ggplot2")

library(ggplot2)
library(ggmap)

This line is a comment plot in window

mapHanover <- get_map("Hanover, NH", zoom=10)

ggmap(mapHanover)

mapLatLong <- get_map(location = c(lon = -71.0712, lat = 42.3538))

ggmap(mapLatLong)

• To make R code easier to type in, save and re-use, we can use an R Script
file.

• In R Studio, click File > New File > R Script

USING R SCRIPT FILES

• Here we see the code inside a “.R” file

• Code can be run line-by-line using the “Run” button in the upper bar

USING R SCRIPT FILES

• Open R Studio (All Programs > R
Studio)

• Downloading the Data:
• In your browser, type
dartgo.org/rspatial

• At the DartBox site, click the
ellipses ... and choose
‘Download’

• Download file Student.zip

• Copy the file to a convenient
location such as:

c:\rworkspace

• Unzip the file

WORKING WITH SPATIAL DATA

READY TO DIVE IN?

• We’ll use R Studio today so we can see our spatial analysis

• Data for this session can be downloaded at:

dartgo.org/rspatial

• Download file and unzip

• Copy the file to a “Working Directory” that R will recognize

• Use the “getwd()” and “setwd()” commands in R, and your computer’s file
browser (Finder on the Mac, Windows Explorer on the PC)

GETTING THE DATA AND R TO WORK
TOGETHER

On the PC:

getwd()

[1] "C:/Users/f002d69/Documents"

> setwd("c:/users")

> getwd()

[1] "c:/users"

>

On the mac:

getwd()

[1] "/Users"

> setwd("~/Desktop")

> getwd()

[1] "/Users/sgaughan/Desktop"

MAP OVERLAY, POINT-IN-POLYGON
ANALYSIS WITH SP “OVER” FUNCTION

• Packages “sp”, “rgdal” and “maps” can turn
your R into a GIS

• Read-Write and Analyze spatial data,
perform “map overlay”

install.packages(“sp”)
install.packages(”rgdal”)
install.packages(”maps”)
library(sp)
library(rgdal)
library(maps)

load a csv with latitude and longitude coordinates

bears <- read.csv("bear-sightings.csv")

coordinates(bears) <- c("longitude", "latitude")

load a shapefile representing an area

parks <- readOGR(".", "10m_us_parks_area")

25

MAP OVERLAY, POINT-IN-POLYGON ANALYSIS WITH
SP “OVER” FUNCTION

do some projection work (sp.proj4string function from sp)

proj4string(bears) <- proj4string(parks)

Map Overlay! (sp.over function)

inside.park <- !is.na(over(bears, as(parks, "SpatialPolygons")))

get the desired output statistic, fraction of sightings in
parks

mean(inside.park)

26

PLOT THE POINTS AND EXPORT

bears$park <- over(bears, parks)$Unit_Name

Put the data on the map in just a few lines!

plot(coordinates(bears), type="n")

use the maps.map function

map("world", region="usa", add=TRUE)

…and the sp.plot function

plot(parks, border="green", add=TRUE)

points(bears[!inside.park,], pch=1, col="gray")

27

PLOT THE POINTS AND EXPORT

points(bears[inside.park,], pch=16, col="red")

Export GIS data or flat-file data

write.csv(bears, "bears-by-park.csv", row.names=FALSE)

Export a GIS format ‘shapefile’ using the
rgdal.writeOGR funtion

writeOGR(bears, ".", "bears-by-park", driver="ESRI
Shapefile")

28

ADDING A LEGEND AND TITLE
add a legend

legend("topright", cex=0.85,
c("Bear in park", "Bear not in park", "Park boundary"),
pch=c(16, 1, NA), lty=c(NA, NA, 1),
col=c("red", "grey", "green"), bty="n")

add a title

title(expression(paste(italic("Ursus arctos"),
" sightings with respect to national

parks")))

29

The “#” is a “comment”. No need to type these lines
note: package "sp" might ask to restart your R session

install.packages("sp")
install.packages("rgdal")

import libraries

library(gstat)
library(sp)
library(rgdal)

INSTALL SPATIAL LIBRARIES “GSTAT”, “SP” AND “GDAL”

load the meuse dataset in to the Rstudio environment

data(meuse)

retrieve/set spatial coord

coordinates(meuse) = ~x+y

note: coordinates use projection
EPSG:28992 Amersfoort/RD Netherlands DutchRD
view the first 5 coordinate pairs

coordinates(meuse)[1:5,]

plot the zinc concentrations (bubble plot,
high levels with larger circles)

bubble(meuse, "zinc", col=c("#00ff0088", "#00ff0088"), main = "zinc
concentrations (ppm)")

LOAD DATASET IN TO R STUDIO AND PLOT

examine the "meuse" dataset, point data set consists of 155 samples
of top soil heavy metal concentrations (ppm), along with a number of
soil and landscape variables. The samples were collected in
a flood plain of the river Meuse, near the village Stein, southern
Netherlands, 50.9686432 Lat,5.7460789 Longitude

Task 2: distance display
load the meuse.grid data
data(meuse.grid)
class(meuse.grid) # dataframe
summary(meuse.grid)

coordinates(meuse.grid) = ~x+y # convert to
spatialpontsdataframe
class(meuse.grid)

set the gridded function to "TRUE", which converts
class to SpatialPixelsDataFrame
gridded(meuse.grid) = TRUE
class(meuse.grid)
clear the plot window
dev.off()
plot image of grid using the distance field
image(meuse.grid["dist"])

add a title to the plot
title("Distance to River meuse.grid(dist), red = 0")

DISPLAY THE DISTANCE TO RIVER

USE THE “GSTAT” PACKAGE FOR THE “INVERSE DISTANCE
WEIGHTED” TOOL

use the gstat "Inverse distance weighted" tool

library(gstat)
zinc.idw <- idw(zinc~1, meuse, meuse.grid)

class(zinc.idw)

spatialPixelsDataFrame

spplot(zinc.idw["var1.pred"], main = "zinc inverse
distance weighted interpolations")

Inverse Distance Weighting (IDW) is a GIS function that uses a deterministic
method for multivariate interpolation with a known scattered set of points.
Unknown points are calculated with a weighted average of the values available at
the known points. This function can be used to create surfaces and index layers
based on discrete observations. Temperature, elevation are examples.

Reference: https://docs.qgis.org/2.2/en/docs/gentle_gis_introduction/spatial_analysis_interpolation.html

EXAMINE LINEARITY

in the previous plot, it
appears
#that measurements
#of high concentrations
of zinc are, in general,
#closer to the river
lets linearize this:

plot(log(zinc)~sqrt(dist),
meuse)
abline(lm(log(zinc)~sqrt(d
ist), meuse))

LOAD THE LINEAR MODEL AND SUMMARIZE

#load the linear model in to an object
zinc.lm <- lm(log(zinc) ~ sqrt(dist), data=meuse)
show summary of the linear model
summary(zinc.lm)

Residuals:
Min 1Q Median 3Q Max

-1.04624 -0.29060 -0.01869 0.26445 1.59685

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.99438 0.07593 92.12 <2e-16 ***
sqrt(dist) -2.54920 0.15498 -16.45 <2e-16 ***

Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4353 on 153 degrees of freedom
Multiple R-squared: 0.6388, Adjusted R-squared: 0.6364
F-statistic: 270.6 on 1 and 153 DF, p-value: < 2.2e-16

KRIGING WITH GSTAT

lznr.vgm = variogram(log(zinc)~sqrt(dist), meuse)
lznr.fit = fit.variogram(lznr.vgm, model = vgm(1, "Exp", 300, 1))

lzn.kriged = krige(log(zinc)~1, meuse, meuse.grid, model = lznr.fit)

the values are INTERPOLATED/ PREDICTED by the original dataset and the kriging function

spplot(lzn.kriged["var1.pred"])

Kriging is a multistep GIS surface creation tool. It explores statistical analysis of the point values and
their distances and then creates the surface of interpolated values. Kriging often used when there is
a spatially correlated distance or directional bias in the data. It is often used in soil science and
geology.

DISPLAY POINTS USING QUANTILE CATEGORIZATION

library(RColorBrewer)
load(system.file("data", "meuse.rda", package = "sp"))

Create a SpatialPointsDataFrame Object from the data.frame

meuse.sp <- meuse #Copy the data. It's still a data.frame

coordinates(meuse.sp) <- ~x + y # Now it's SpatialPointsDataFrame, with coordinates x and y
Create a categorical variable and plot it

q <- quantile(meuse$zinc, seq(0.1, 0.9, 0.1))

These are the actual values of the quantiles
q

Plot the data in 5 bins

meuse.sp$zncat <- cut(meuse.sp$zinc, c(0, q[c(2, 4, 6, 8)], 2000))
spplot(meuse.sp, "zncat", col.regions = brewer.pal(5, "YlGnBu"))

SEND THE POINTS TO A GOOGLE MAPS HTML PAGE

install.packages("plotGoogleMaps")
library(plotGoogleMaps)
data(meuse)
coordinates(meuse)<-~x+y # convert to SPDF

use CRS from the sp pacakate to indicate the map projection/coord ref system

proj4string(meuse) <- CRS('+init=epsg:28992')

Adding Coordinate Referent Sys.
Create web map of Point data

m<-plotGoogleMaps(meuse,filename='myMap1.htm')
Plotting another map with icons as pie chart

m<-segmentGoogleMaps(meuse, zcol=c('zinc','dist.m'),
mapTypeId='ROADMAP', filename='myMap4.htm',
colPalette=c('#E41A1C','#377EB8'), strokeColor='black')

SHOW “MEUSE” DATA IN GOOGLE MAPS
WITH “PLOTGOOGLEMAPS” LIBRARY

DATA IN GIS SOFTWARE

R AND GIS
- MORE LINKS AND REFERENCES -

• R-GIS Tutorials
• https://cran.r-project.org/doc/contrib/intro-spatial-rl.pdf
• https://pakillo.github.io/R-GIS-tutorial/#intro

• Visualization, analysis and resources for R and Spatial Data
• http://spatial.ly/r/

• Creating maps in R https://github.com/Robinlovelace/Creating-maps-in-R

• Using “Leaflet” maps in R https://github.com/rstudio/leaflet

• National Center for Ecological Analysis:
https://www.nceas.ucsb.edu/scicomp/usecases

• https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/ggmap/ggmapCheatshee
t.pdf

• http://www.maths.lancs.ac.uk/~rowlings/Teaching/UseR2012/cheatsheet.htm
l

• http://spatial.ly/wp-content/uploads/2013/12/spatialggplot.zip

41

https://cran.r-project.org/doc/contrib/intro-spatial-rl.pdf
https://pakillo.github.io/R-GIS-tutorial/#intro
http://spatial.ly/r/
https://github.com/Robinlovelace/Creating-maps-in-R
https://github.com/rstudio/leaflet
https://www.nceas.ucsb.edu/scicomp/usecases
https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/ggmap/ggmapCheatsheet.pdf
http://www.maths.lancs.ac.uk/~rowlings/Teaching/UseR2012/cheatsheet.html
http://spatial.ly/wp-content/uploads/2013/12/spatialggplot.zip

MORE LINKS AND REFERENCES

• http://www.r-bloggers.com/r-beginners-plotting-locations-on-
to-a-world-map/

• http://www.kevjohnson.org/making-maps-in-r/

• GGMAPS (depends on GGPLOT2, imports RGoogleMaps

• https://cran.r-project.org/web/packages/ggmap/index.html

• Spatial References (map projections & coordinate systems)

• http://spatialreference.org/ref/epsg/

• Online Tutorials

• Lynda Tutorials for GIS, R https://www.lynda.com/

• ESRI Tutorials

• GIS Lounge - http://www.gislounge.com/tutorials-in-gis/

42

http://www.r-bloggers.com/r-beginners-plotting-locations-on-to-a-world-map/
http://www.kevjohnson.org/making-maps-in-r/
https://cran.r-project.org/web/packages/ggmap/index.html
http://spatialreference.org/ref/epsg/
https://www.lynda.com/
http://www.gislounge.com/tutorials-in-gis/

OTHER SPATIAL FUNCTIONS AND PACKAGES

• Spatial Buffer - package: rgeos, function name: gBuffer

• Near - package: rgeos, function name: gDistance

• Calculate slope of a surface from elevation dataset -
package: raster, function name: terrain

• Raster values to points – package: raster, function
name: extract

• Proximity Analysis, Hotspot analysis, density analysis

43

OTHER SPATIAL FUNCTIONS AND PACKAGES
Export to KML with rgdal package, import well-formatted
KML files
writeOGR(locs.gb, dsn = "locsgb.kml", layer = "locs.gb",
driver = "KML")
newmap <- readOGR("locsgb.kml", layer = "locs.gb")

Make data spatial with sp package
coordinates(locs) <- c("lon", "lat") # set spatial
coordinates
plot(locs)

Define a projection
crs.geo <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84") #
geographical, datum WGS84 proj4string(locs) <- crs.geo #
define projection system of our data summary(locs)

Plot on a simple map
plot(locs, pch = 20, col = "steelblue") library(rworldmap) #
library rworldmap provides different types of global maps,
e.g: data(coastsCoarse) data(countriesLow)
plot(coastsCoarse, add = T)

44

OTHER SPATIAL FUNCTIONS AND PACKAGES
write to shapefile
writePointsShape(locs.gb, "locsgb")

Read shapefile
gb.shape <- readShapePoints("locsgb.shp")
plot(gb.shape)

geostats
library(gstat)
library(geoR)
library(akima) # for spline interpolation
library(spdep) # dealing with spatial dependence

45

QUESTIONS?

46

MAP PROJECTIONS

• To represent our three-dimensional earth (an ellipsoid) in two dimensions,
datums and map projections are used

Projecting a 3D
ellipsoid to a 2D
computer screen or
piece of paper will
distort one or more of
the following:
- shape
- distance
- area
- direction

Projections are
sometimes designed
to minimize one of
these

47

• Data Frames

• CSV format (clean csv)

• Tidy Data

• Other formats - Reading out of databases (SQL), Geographic data
constructs

DATA MANAGEMENT

